
Qualifying Exam
Nicholas Chen

nchen@uiuc.edu

1

mailto:nchen@uiuc.edu
mailto:nchen@uiuc.edu


My Criteria for Tool 
Evaluation

‣ The tools should not distract the developer with information 
overload.

‣ The tools must be adaptive and work as the software being 
developed on evolves. 

‣ The tools should be non-intrusive; the developer should be 
able to use the tools with minimal changes to his existing 
software artifacts.

‣ The tools should not force the developer to use a new 
unfamiliar environment but should work with existing tools 
that the developer is familiar with.

2



Automatic Test 
Factoring for Java

David Saff, Shay Artzi, Jeff H. Perkins 
and Michael D. Ernst

ASE ‘05

3



What’s the paper 
about?

4



‣ System tests help check that system requirements 
are met but they take a long time to run.

‣ So they aren’t run frequently and developers don’t 
get the benefit of rapid feedback when something 
goes wrong.

‣ Mock objects are used to reduce the time of 
running tests; this paper presents a way to 
automatically factor focused tests by introducing 
mock objects.

‣ By promoting rapid feedback, the developer is able 
quickly fix detected errors before they grow in 
seriousness.

5



The Importance of 
Rapid Feedback

‣ Reducing Wasted Development Time via 
Continuous Testing

‣ Early detection of errors saves time 
overall

‣ Problems left unfixed tend to become 
more obscure

Found that reducing time between error 
introduction and discovery improves overall 
development time

6



Agenda

1. Motivation and Basics of Mocking

2. Test Factoring Technique

3. Test Factoring Implementation

4. Improving Test Factoring

7



‣ Red / Green / Refactor mantra

‣ Effective for unit-tests that are focused on 
small parts of the entire system

‣ Still need system tests

‣ “System tests [however] are easier to 
create and understand”

Benefits of Test-Driven 
Development

Want the same benefit of focused tests from 
system tests

8



“Slow tests” is 
one Test Smell 

‣ If tests take too long, 
developers don’t run them 
frequently
‣ If tests take too long, 
developers waste time waiting
‣ Slow tests are an integration 
bottleneck

9



Mock Example

System 

Test
Code Under 

Test
Environment

Program

System 

Test
Code Under 

Test

Program

Environment

Mock

10



Difference between 
stubs and mocks

STUB

First call

Second call

Third call

Fourth call

Single Value

A stub produces a value given calls

A mock produces a value given calls after 
checking its internal state

MOCK

method3 arguments3 value

arguments2 valuemethod2

valuearguments1method1Call Result

11



Manual Mocking

    public void testReloadsCachedObjectAfterTimeout() {
        // Notice how this actually resembles the MockExpectation table                  
        // It’s like filling the table entries manually
        mockClock.expects(times(3)).method("getCurrentTime").withNoArguments()
                .will(returnValues(loadTime, fetchTime, reloadTime));
        mockLoader.expects(times(2))
                .method("load").with(eq(KEY))
                .will(returnValues(VALUE, NEW_VALUE));
        mockReloadPolicy.expects(atLeastOnce())
                .method("shouldReload").with(eq(loadTime), eq(fetchTime))
                .will(returnValue(true));
        // Here we “replay” the values from our “table”
        assertSame("should be loaded object", VALUE, cache.lookup(KEY));
        assertSame("should be reloaded object", NEW_VALUE, cache.lookup(KEY));
    }

12



1. Motivation and Basics of Mocking

2. Test Factoring Technique

3. Test Factoring Approaches

4. Improving Test Factoring

13



The formula

System 

Test
Code Under 

Test
Environment

Program

Capture, Factor and Replay

14



Capturing

myTimedCache.lookup("key1")

MockExpectations Table

Method Arguments Value

load theKey value

getCurrentTime void time

myTimedCache

lookUp(theKey) myObjectLoader

load(theKey)

value

myClock

getCurrentTime

time

theObject

put into cache

Local stuff

Local stuff

Tested Code

Tested Code

Environment

15



Replay
MockExpectations Table

Method Arguments Value

load theKey value

getCurrentTime void time

myTimedCache

lookUp(theKey)

load(theKey)

value

getCurrentTime

time

theObject

put into cache

Tested Code

Tested Code

Environment

16



1. Motivation and Basics of Mocking

2. Test Factoring Technique

3. Test Factoring Approaches

4. Improving Test Factoring

17



Custom 
Instrumentation

‣ Create a proxy that will intercept the relevant calls

‣ Transform field access to method calls for uniformity

‣ Introduce a new interface for class; use references to 
these new interfaces whenever possible

‣ JDK classes instrumented beforehand; JVM modified 

‣ The actual work is done by a delegate and the interaction 
is captured into a table

Instrumentation is the addition of byte-codes to methods for the 
purpose of gathering data to be utilized by tools

18



Why Custom 
Instrumentation?

‣ Most Mock-ing frameworks use 
java.lang.reflect.Proxy for dynamic proxies

‣ can only mock interfaces and not classes

‣ cannot handle static method calls

‣ cannot handle final classes and private 
methods

19



Why Custom
Instrumentation?

‣ So, unfortunately, normal Mock-ing 
frameworks 

‣ cannot handle legacy code

‣ require you to design for testing in the 
first place

‣ doesn’t work for all cases (reflection, 
native methods, etc)

Do we need to support everything to make 
test factoring useful?

20



Why not AOP?

‣ Complicated process for tracing

‣ Had to use non-standard JVM so why don’t 
just use AOP? AOP’s poster child is tracing

‣ AOP and tracing JDK classes

‣ AOP and performance

‣ Instrumentation experience on the team

21



Twin Class Hierarchy 
Comparison

‣ “Wrappers must be written by hand for 
each native method...”

‣ They can be instrumented the same way 
as the capturing version of classes

‣ “Of which there are a great many...”

‣ 3% of the system classes in Java are native

Twin Class Hierarchy strategy has multiple 
benchmarks which shows that performance was fine 

22



Partition Problems

‣ Heuristic: “choose the class containing main routine as 
environment, the changed classes as code under test 
and all other classes as the common libraries” 

‣ For the same system test, need different runs for 
different classes

‣ Every call to a class is captured –  “typical run 
processes 1 GB of trace data....”

‣ Capturing occurs only once at night but transcripts 
expected to be useful all day

23



amock
A.java B.java

System Test
that uses A and B

Single Trace

FactoredB.java

FactoredA.java

‣ Doesn’t handle JNI, instrumenting JDK, full 
reflection
‣ Generates human readable/editable tests with 
JMock

24



Partition Problems

‣ Heuristic: “choose the class containing main routine as 
environment, the changed classes as code under test 
and all other classes as the common libraries” 

‣ For the same system test, need different runs for 
different classes

‣ Every call to a class is captured –  “typical run 
processes 1 GB of trace data....”

‣ Capturing occurs only once at night but transcripts 
expected to be useful all day

25



Real Results

‣ Experiment done with one project and two 
developers

‣ Time to failure actually increased

‣ Was the result reproducible in other 
systems? No implementation was released 
so hard to experiment

‣ Was this system specially tuned to handle 
Daikon?

26



1. Motivation and Basics of Mocking

2. Test Factoring Technique

3. Novelties of  Test Factoring

4. Improving Test Factoring

27



MockExpectations Table 
Longevity

‣ Capture intent of changes in a change 
language

‣ Permit reordering of calls to independent 
objects possibly with human intervention

28



Using the 
MockExpectations table
‣ Since the calls to/from the environment are 

already captured, we could use the 
MockExpectations table to check that 
certain calls are in order

‣ This is called behavior verification

OPEN

READ

WRITE

29



Integration with Mylyn

‣ Test prioritization and test selection are 
desired improvements

‣ Eclipse already has Mylyn that tracks user 
focus on current tasks and stores them in a 
context

‣ Correlate edited classes and tests for test 
selection and prioritization

30



My Evaluation of Test 
Factoring

‣ The tools should not distract the developer with 
information overload.

‣ The tools must be adaptive and work as the 
software being developed on evolves. 

‣ The tools should be non-intrusive; the developer should be able to 
use the tools with minimal changes to his existing software 
artifacts.

‣ The tools should not force the developer to use a new 
unfamiliar environment but should work with existing tools 
that the developer is familiar with.

31



Conclusion

Automatic Test Factoring takes advantage of 
existing system tests by factoring the main 
parts into less expensive tests that developers 
can run frequently to verify functionality. 

32



Questions

33



Qualifying Exam
Nicholas Chen

nchen@uiuc.edu

34

mailto:nchen@uiuc.edu
mailto:nchen@uiuc.edu


Appendices

35



Mock Example - Code 
Under Test

public class TimedCache {
    // ObjectLoader, Clock and ReloadPolicy are INTERFACES
    private ObjectLoader loader;  
    private Clock        clock;
    private ReloadPolicy reloadPolicy;
    private HashMap      cachedValues = new HashMap();
    
    private class TimestampedValue {     
        // TimeStamp is an INTERFACE
        public final Timestamp loadTime;
        public final Object    value;
        
        public TimestampedValue(final Object value, final Timestamp timestamp)
    }
    
    public TimedCache(ObjectLoader loader, Clock clock, ReloadPolicy reloadPolicy)
    
    public Object lookup(Object theKey)
    
    private TimestampedValue loadObject(Object theKey)
    
    public void putValue(Object key, Object value, Timestamp loadTime)
}

36



Mock Example - Setting 
up mocks

// Create MOCK OBJECTS
private Mock mockClock = mock(Clock.class);
private Mock mockLoader = mock(ObjectLoader.class);
private Mock mockReloadPolicy = mock(ReloadPolicy.class);
private TimedCache cache = 
        new TimedCache((ObjectLoader)mockLoader.proxy(),
                       (Clock)mockClock.proxy(),
                       (ReloadPolicy)mockReloadPolicy.proxy());

// Create DUMMY OBJECTS
final private Object KEY = newDummy("key");
final private Object VALUE = newDummy("value");
final private Object NEW_VALUE = newDummy("newValue");

private Timestamp loadTime = 
(Timestamp)newDummy(Timestamp.class, "loadTime");
private Timestamp fetchTime = 
(Timestamp)newDummy(Timestamp.class, "fetchTime");
private Timestamp reloadTime = 
(Timestamp)newDummy(Timestamp.class, "reloadTime");

37



Mock Example - Testing 
with Mocks

    public void testLoadsObjectThatIsNotCached() {
        // Notice how this actually resembles the MockExpectation table
        // It’s like filling the table entries manually
        mockLoader.expects(once()).method("load").with(eq("key1"))
                .will(returnValue("value1"));
        mockLoader.expects(once()).method("load").with(eq("key2"))
                .will(returnValue("value2"));
        mockClock.expects(atLeastOnce()).method("getCurrentTime")

.withNoArguments().will(returnValue(loadTime));

        // Here we “replay” the values from our “table”
        assertSame("first object", "value1", cache.lookup("key1"));
        assertSame("second object", "value2", cache.lookup("key2"));
    }

38



Partitioning

TimedCache

ObjectLoader

Clock

ReloadPolicy

Timestamp

Tested Code

Environment

39



Dynamic Proxies in Java

// Foo is an interface; 
// handler is an InvocationHandler
Foo f = (Foo) Proxy.newProxyInstance(
                Foo.class.getClassLoader(),
                new Class[] { Foo.class },
                handler);

‣ Proxy classes are public, final, and not abstract.
‣ "$Proxy" is prepended to dynamic proxies
‣ The handler has an invoke(...) method that is 
called in the proxy

40



Twin Class Hierarchy

original 
class 

hierarchy

OOC

twin 
class 

hierarchy

IOC

irregular 
classes

OOC

41


